Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) Commissione Scientifica Nazionale per l'Antartide (CSNA) Conferenza nazionale sulla ricerca in Antartide Roma, Accademia Nazionale dei LIncei – 20-21 ottobre 2015

Antarctic ice sheet and sea level

Barbara Stenni

on behalf of the glaciological community Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia

Università Ca'Foscari Venezia

As part of ITASE project, PNRA undertook three traverses in Dome C & Talos Dome drainage area (East Antarctica).

Spatial variations in accumulation are well correlated with surface slope changes along the wind direction and may exceed 200 kg m⁻² yr⁻¹ within one kilometer. Wind-driven sublimation rates are less than 50 kg m⁻² yr⁻¹ in plateau areas and up to 260 kg m⁻² yr⁻¹ in slope areas and account for 20-75% of precipitation. The study shows that mass loss is dominated by sublimation and most of the mass lost is transported away as water vapor . Frezzotti et al, 2004, 2005, 2007

EXTRAORDINARY BLOWING SNOW TRANSPORT IN EAST ANTARCTICA

Air Flow

Extensive presence of ablation surface (blue ice and wind crust) suggest that the combine processes of blowing snow sublimation and snow transport remove up to 50% of the precipitation in the coastal and slope convergence area. These phenomena represent a major negative effect on the snow accumulation, and they are not sufficiently taken into account in studies of surface mass balance. Scarchilli et al. 2010, Scambos et al., 2012

Snow wind transportation was recorded for ~80% of the time, and 20% of time recorded, the flux is > 10^{-2} kg m⁻² s⁻¹ with particle density increasing with height.

Cumulative snow transportation is ~4 orders of magnitude higher than snow precipitation at the site.

An increase in wind speed and transportation (~30%) was observed in 2007, which is in agreement with a reduction in observed snow accumulation.

Scarchilli et al. 2010

<u>Ground-based measurements of spatial and temporal variability of snow</u> <u>accumulation in East Antarctica</u>

50 km

Spatial and "temporal" spatial interval of SMB observations. Spatial variability of snow accumulation at km scale is 1 order of magnitude higher than temporal variability at 10s-100s years and spatial variability influences the interpretation of past accumulation from ice core analysis.

A) Geographical distribution of SMB temporal variability between 1960–present (β 40) and Tambora–1960s (β 150) B) Relationships in SMB temporal variability of the last two century 1960s–present (β 40) and Tambora–1960s (β 150).

SMB changes over most of Antarctica during the last two century are statistically negligible. However, a clear increase in accumulation of more than 10% has occurred in high SMB coastal regions and over the highest part of the East Antarctic ice divide since the 1960s. The decadal records of previous centuries show that the observed increase in accumulation is not anomalous at the continental scale, that high-accumulation periods also occurred during the 1370s and 1610s, and that the current SMB is not significantly different from that over the last 800 years.

East Antarctic International Ice Sheet Traverse (EAIIST)

A **consortium** of scientists from three nations, Italy, France and **US** is built around the idea to explore and study the geophysical (snow physics, surface mass balance, density, temperature, seismicity, etc.), geochemical (impurities, aerosols, air-snow transfer, water isotopes, etc.) and meteorological dimensions (AWS, atmospheric dynamic, air mass transport, etc.) of these most inhospitable, remote and unknowns regions of the planet by the means of a scientific traverse.

BEDMAP 2 Ice thickness and subglacial topographic model of Antarctica

https://www.bas.ac.uk/project/bedmap-2/ Cianfarra et al., 2009; Roberts et al., 2011; Fretwell et al., 2013

DETERMINATION OF THE SURFACE AND BED TOPOGRAPHY AT DOME C AND TALOS DOME

Tabacco et al., 1998; Remy & Tabacco, 2000; Frezzotti et al., 2004; Forieri et al., 2004; Urbini et al., 2006 http://www.taldice.org/

Historical behaviour of Dome C and Talos Dome (East Antarctica) ...

Accumulation behaviour at Dome C

Accumulation and velocity change at Talos Dome

Urbini et al., 2007; Vittuari et al., 2004

LGM - Huge grounded ice shelves and outlet glaciers sealed the coastal areas and thickened up to several hundred meters above the present sea level.

Orombelli et al., 1990; Baroni et. al . 2004

Terra Nova Bay

The RSL curve shows an exponential shape typical of areas that have undergone isostatic rebound.

The curve intersects the marine limit between about 6500 and 7000 ¹⁴C yr B.P. (ca 8000 yrs Cal BP). We favor the older end of this range, because younger ages are not consistent with dates of *in situ* shells and of penguin rookeries above the marine limit

Initial rates of relative sea-level change were about 8 mm/yr

Over the last 1000 years, this rate has dropped to 0.5 mm/yr.

The RSL curve and the age of the marine limit suggest that the final unloading of ice from Terra Nova Bay took place shortly before 7000 ¹⁴C yr B.P. (ca 8000 cal BP).

Climate Change Impacts on Cold Climates Biologic Bellwether of Climatic Changes in Cold Regions

Response of Adélie Penguins and Southern Elephant Seals to Climate and Habitat Changes

Baroni & Orombelli, 1994; Lambert et al., 2002; Hall et. al., 2006; Baroni, 2013 Lorenzini et al., 2010, 2012, 2014; Parks et al., 2015

Glacial fluctuations since the 'Medieval Warm Period' at Rothera Point

Attraverso la datazione di muschi e dei loro suoli affiorati recentemente a causa del ritiro del ghiacciaio, si è potuto datare l'inizio del MWP a 961-800 cal BP e la successiva espansione del ghiacciaio (LIA) tra 671 e 558 cal BP, continuata fino almeno a 490-317 cal BP (Guglielmin et al., 2015).

	Site	Material	Measured	Conv	cal yr BP
			radiocarbon	Age BP	age
			age		
	В	moss	340±40	380±40	490-317
	В	organic	1000±40	1040±40	961-800
		sediment			
	А	moss	670±40	710±40	671-558
	А	organic	800±40	800±40	745-554
		sediment			
	M11	moss	540±40	580±30	631-504
Posizione dei campioni: M11 (a), A (b), B (c e d)					

"HOLOCLIP - Holocene climate variability at high southern latitudes: an integrated perspective"

Considered areas

(1) Western Ross Sea, Oates-George V-Adelie Lands including Dome C ice drainage basin, (2) Prydz Bay, (3) Dronning Maud Land and (4) Antarctic Peninsula-Scotia Sea.

Synthesis integrating SH ice and marine data with climate models

So far 26 peer reviewed papers has been published, please visit: www.holoclip.org

A L o s D o m e c e C o r E

TALDICE consortium

TALDICE is a European ice core research project lead by PNRA aimed at retrieving an ice core reaching back through the previous two interglacials (about 320,000 years), the fourth ice core records. So far more than 40 peer reviewed papers (Nature Geoscience, Science, PNAS etc.) has been published.

http://www.taldice.org/

Millennial scale climate variability around Antarctica

Distinct regional features in terms of warming rates between the Indo-Pacific and Atlantic sectors of Antarctica Stenni et al., 2011

Thanks for your attention !!!!

21